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Abstract. Distant correlation experiments with identical fermions (e.g. protons, as in the 
work of Lamehi-Rachti and Mittig) require a theory which includes the Pauli principle. 
This fact makes an immediate application of the usual quantum mechanical distant 
correlation theories (including our previous work) impossible, because the exclusion 
principle precludes the interpretation of particles as subsystems. 

Utilising the fact that the measuring apparatuses (for one-particle measurements) are 
in  two non-overlapping spatial regions, it is shown that there exists a mapping preserving 
all the relevant physical information that allows a transformation to a distinct-particle 
picture, in which the particles can be naturally treated as subsystems, and the relevant 
observables have the usual simple form. It is argued that, due to the existence of this 
mapping, the Pauli non-local correlations do not contribute to distant correlations between 
identical fermions. A negentropy measure of distant correlations is introduced and dis- 
cussed. It is demonstrated that they are necessarily of dynamical origin. 

1. Introduction 

Among the experiments performed (Clauser and Shimony 1978, Selleri and Tarozzi 
1981) to resolve the contradiction between quantum mechanics and the model of local 
hidden variables one has made use of identical fermions (Lamehi-Rachti and Mittig 
1976). Confirming quantum mechanics it actually verified the existence of non-local 
quantum correlations between protons. Since the Pauli principle, which is necessarily 
valid for this case, is itself a source of non-local quantum correlations, one wonders 
(Herbut and VujiEiC 1985) if it is possible to separate these Pauli identical-fermion 
correlations from the rest of the non-local correlations. 

It is the aim of this article to show that this is indeed possible in the case of two 
non-overlapping regions of observation, and that, as far as distant correlations are 
concerned, the Pauli identical-fermion correlations do not contribute at all, and that 
distant correlations are entirely of dynamical origin. 

2. The preparation conditions 

In all distant correlation experiments one has two measuring apparatuses A and A’ 
in non-overlapping spatial domains V and V’ respectively. First we consider the case 
of a two identical distant fermion state vector Y r2 describing a pure ensemble prepared 
so that one of the fermions, no matter which, certainly arrives at V, while the other 
certainly arrives at V’. 
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To express this preparation condition in quantum mechanical terms, we introduce 
two kinds of single-particle projectors: 

P,dzf 5 Ir,) dV( r , /  ( l a )  

P:y] ( r , )  dV(r , /  ( 1 b )  

i = l , 2 .  

b 

It is understood that these projectors act trivially in the spin factor space of the 
corresponding particle. 

Owing to non-overlapping: V n V' = 0, one has the important orthogonality relation 
P,P: = 0 i = 1 , 2  ( I C )  

( P ,  0 P i  + P ; 0  PJ* rz = q (2)  
and the above preparation means that 

In this expression Plop; stands for the arrival of the first fermion at V, and 
simultaneously the arrival of the second one at V'. The exchange term P', 0 P2 represents 
the situation in which the particles are exchanged, and the plus sign between the two 
orthogonal two-particle projectors means 'or'. The invariance of qr2 under the pro- 
jector 

i.e. the preparation condition ( 2 ) ,  expresses the fact that the corresponding proposition 
is true for the ensemble described by Vr2, and that the elements of the ensemble are 
thus adapted to the localisation and  separation of the measuring apparatuses A and A'. 

If we had two distinct particles instead of identical ones, so that particle 1 arrived 
at the apparatus A and particle 2 at A', the preparation condition for a two-distant- 
particle state vector a,, would be 

P, 0 P i  + P 0 P2 

( P , 0 P S ) @ , , = @ , z  H I O H ? .  (3) 
It should be noted that in the usual (distinct-particle) distant-correlation experi- 

ments the preparation condition (3) is satisfied, which means that the two-distinct- 
particle state space H I  0 H 2  is restricted to 

Rd '2 R (  P,  0 Pi) = R (  P , ) @  R (  Pi,). 
We call the description of distant correlations in this subspace the distinct-particlepicture. 

3. Transition to the distinct-particle picture 

In the case of identical fermions, the non-overlapping of the spatial regions V and V' 
(typical for distant correlation measurements) enables one to introduce an a posteriori 
distinction of the particles: the particle that arrives at V is by definition particle 1, the 
one that arrives at V' is particle 2 .  This means replacing Yr2 ,  which satisfies ( 2 )  and 

by a physically equivalent Q I 2  satisfying (3). The operator EI2 in (4) is the exchange 
operator in H I O H , .  It exchanges the spatial and the spin coordinates. 

It turns out (theorem 1) that this replacement can be achieved essentially by 
projecting out the ( P ,  0 P i )  component of P c.  This map preserves all the relevant 
physical information contained in 9r2, because it acts as an isomorphism (though 
projectors are singular operators). This will be seen to stem from the fact that we are 
confined to * r2 satisfying the preparation condition ( 2 ) .  

E,2VIrl= - ' P r 2  (4) 
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Theorem 1 .  The operator 2 1 ’ 2 ( P , 0 P i )  maps the subspace RI consisting of all Vr, 
(satisfying simultaneously the compatible conditions ( 2 )  and (4)) as an  isomorphism 
onto 

def 
Rd = R ( P , O P ; ) .  

def 
The inverse isomorphism is 2” ’A I2 ,  where A l l  = 2T1(  1 - Elz)  is the projector onto the 
antisymmetric subspace. 

Proof: Since the projectors A, ,  and ( P ,  0 Pi+ PI 0 P z )  commute, the set of all Vr2 
satisfying ( 2 )  and (4) is the subspace 

R, ‘2 R ( A  I J n R ( PI 0 P i  + P j 0 P,). 

Further, owing to Rd c R (  PI 0 Pi + Pi 0 P2) ,  which is equivalent to 

(PI 0 P i ) (  PI 0 P i  + Pi 0 PZ) = PI 0 PI, 

the projector A,> by itself projects Rd into RI because it leaves R ( P , O P i + P j O P , )  
invariant. Obviously, PI 0 Pi  projects R, into R d .  

Next we prove that 2”*A,, and 2”,(  PI 0 P i )  invert each other if their domains are 
confined to Rd and R, respectively: 

(21 ’2A,2) (2 ’  ’P,OPS)[A,,(P1OPS+ PIOP, ) ]  

= AI>( PI 0 P i  + Pi 0 Pz) 

(21’2P1 0 Ps)(2”2A12)(  PI 0 P i )  = PI 0 P i .  

These equalities can be easily checked using the following relations: 

(PI 0 P S ) ( P {  0 Pz) = 0 

E,,(PIOPi) = (Pl0Pz)E,* 

-EIZAI>=Al2. 

Thus 2”’AI2 and 2”2(P,0PS)  are mutually inverse bijections of Rd and R, onto each 
other. 

To prove that they are isometric maps, it is sufficient to show this for one of them, 
say for 2”2A12.  It is further sufficient to take cp E R ( P , ) ,  I / cp I I  = 1, X E  R ( P i ) ,  llx/l = 1, 
and to prove that 21’2A,,(cp0,y) is still normed. Indeed this is so as is well known 
from the manner of obtaining Slater determinants. 

Remark. It may be worthwhile to give a simple illustration of the basic geometrical 
idea in the above proof. Let us take the three-dimensional real Euclidean space E ,  
as the counterpart of HI 0 H I .  Let R ( PI 0 P i  + Pi 0 Pz)  correspond to the x, y-plane, 
and R ( A , , )  to the x, z-plane. Then R, is the analogue of the x-axis. As to R d ,  let us 
take for its correspondent an  x‘-axis obtained by rotating the x-axis for 45” around 
the z-axis. 

This rotation is the counterpart of 2” , (  PI 0 6‘;) as far as its application to the x-axis 
goes, because it can be replaced there by the action of the projector onto the x’-axis 
and by subsequent multiplication with (cos 45”)-I = 2”‘ to make up  for the shortening 
of vectors. In this way isometry is reproduced by a renormalised projector. 
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The analogue of 2"2A,2 is the inverse rotation which can be achieved by projection 
into the x, z-plane with subsequent multiplication with (cos 4 Y - I  = 2 ' j2 .  This is so 
because in this case projection onto the x, z-plane amounts to the same as projection 
onto the x-axis. The reason for this is the fact that the x'-axis lies in the x,y-plane, 
and the latter is invariant under the projector onto the x, z-plane. Thus, here isometry 
is achieved by renormalised projection onto a larger space, the projector of which is 
in theorem 1 the elementary antisymmetriser. 

The significance of theorem 1 is twofold. First, it gives a transition from the standard 
identical-fermion picture to a distinct-particle picture on account of the non-overlap- 
ping of the spatial regions of the apparatuses A and A' ( a  posteriori distinction of the 
particles). Second, as a consequence of this transition, the intricate description of the 
measurements on the individual particles in the pairs (one-apparatus measurements) 
should simplify. The next section deals with this point. 

4. One-apparatus observables in the transition to a distinct-particle picture 

To derive the operators representing the one-apparatus observables in the identical- 
particle picture, one must have two single-particle Hermitian operators 0, and 0: for 
each particle and they have to be compatible with the projectors associated with the 
localisation in V and V ' :  

CO,, P,l = 0  [o: ,  P : ] = 0  i = 1 , 2  

(cf ( l a ,  b ) ) .  We assume that these operators have purely discrete spectra (the general 
case of measurable observables, see von Neumann 1955, p 2201, and we write them 
in spectral form 

0, = 1 apP j P )  0: = 1 b,QiY' i =  1 , 2 .  
P 4 

The above commutativity with the operators implies commutativity with their eigenpro- 
jectors. Using an argument analogous to the one that led to the preparation condition 
( 2 ) ,  and taking into account the mentioned compatibility of P, and Pi"', one derives 
the explicit form of the observable measured by the apparatus A: 

0 , 2  = 1 up( P,  P i"'0 P i +  Pj@P2P:p') .  
P 

In this expression P,P',p'@P; stands for the triple coincidence: particle 1 arrives at 
apparatus A, the 'pointer' shows the result a,, ( P  ',,,' has occurred), and particle 2 arrives 
at V'. In the exchange term P j @ f 2 P ~ "  the roles of particles 1 and 2 are exchanged. 
In terms of the observables 0,, i = 1,2 (cf (5)), one obtains: 

0 , 2 =  o,P,oPs+Pjoo,P,. (60 1 
Analogously, the observable measured by the apparatus A' is: 

O{*  = bq(  P ~Q',"'O P2+ PI@ P SQ;") 
4 

= P ;o;o Pr+ PI@ Pia;. ( 6 b )  

Note that O,, and Oj2 are compatible with the projector in the preparation condition 
( 2 ) .  
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From the physical point of view, the restriction to the one-apparatus obsetvables 
012, O:,, compatible with the preparation projector, means no loss of generality 
because it is the purpose of the preparation to single out this kind of measurements. 

It is also important to notice that 012 and 01,2 are two-particle symmetrical operators. 
This gives an  intricate description of one-apparatus observables, but there is no simpler 
way because one-particle operators have no physical meaning for a two-identical- 
fermion system. 

n e o r e m  2. In the transition to the distinct-particle picture, i.e. to R d ,  the one-apparatus 
observables OI2 and Ol,, become the one-particle observables 0, and 0; respectively 
(cf (6a ,  b )  and (5)).  

Proof: Owing to ( 6 a ) ,  ( I C )  and theorem 1, the transform of O , ,  is 

( 2 ” ’ P I 0 P 1 , ) O I 2 [ 2 ~ ” ~ (  1 - E , J ]  = (Plop;)(  o , P , 0 P ; ) (  1 - E 1 ? )  
= ( O , P , O  P ;)[(PI0 P i ) ( l -  E , J l=  OlP l0  Pi = 0, 

(note that P,@P;  is the identity operator in the distinct-particle picture). The claim 
regarding the transform of O’,, follows analogously. 

The result of theorem 2 is an important simplicity of the distinct-particle picture. 
It allows us to state that the transformation to the distinct-particle picture reduces the 
identical-fermion case to the usual case of distant correlations. 

The physical equivalence of the identical-particle and the distinct-particle pictures 
consists further, as can be easily shown, in the equality of the probability of the 
coincidence of the results a,, of O,,  and b, of 01’ in 9r2 with the probability of the 
coincidence of a,, of 0, and of b, of 0; in the corresponding Q 1 2 .  Hence, the distant 
correlations, which consist of these coincidence probabilities, are preserved in the 
transition 9 r2 + Q I 2 .  In other words, the Pauli principle, which is lost in this transition, 
gives no contribution to the distant correlations. 

5. A measure and dynamical origin of distant correlations between identical fermions 

Since we have an isomorphism between the identical-fermion and the distinct-particle 
pictures, we start with the latter, which is better understood. 

The best adapted form of a given two-particle state vector Q,, for investigation of 
the quantum correlations inherent in it is its Schmidt canonical form (Schrodinger 
1935, Herbut and VujiEiC 1976) 

O 1 2 = C  r , ” 2 p , 0 x I  (70 )  
I 

in which by definition r, are the positive eigenvalues, and {cp,: i = 1,2 , .  . .} are corre- 
sponding orthonormal eigenvectors of the reduced statistical operator 

def  
P ,  = Tr21@.1J(% =c r , b , ) ( c p l l .  (7b) 

The vectors x ,  are evaluated by means of the partial scalar product (Herbut and  

i = 1,2 ,  . . . . (7c) 

I 

VujiEiC 1976) 

l X J  = r : , ’*(PtIQl2) )  

They turn out orthonormal. 
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In order to obtain a measure of the quantum correlations contained in Q I 2 ,  we 
suggest making use of the concept of negentropy (Lindblad 1973):  

(8) 
der  

N(@It) = S(@lZ) - S(P1) - S ( P d  
de f  

where for every statistical operator p, S( p )  = -Tr p In p, and 

der 

S(@l2! = S ( l @ l 2 ) ( @ l * l )  = o  
is the entropy (von Neumann 1955) of the pure-state statistical operator. Besides, one 
has 

S (  p I )  = S( P Z )  = -1 r, In r, , 

because p2 = r,Ix))(x,l  (Herbut and VujiEi6 1976) .  Hence 

N ( @ ~ ? )  = 2 C r, In r, .  (9) 

The suitability of lN(@12)l as a measure of correlations is based on the following 
properties. 

( i )  When there are no correlations, i.e. when the Schmidt canonical form has only 
one term 

( i i )  As seen from ( 9 ) ,  lN(@12)l is larger the more approximately equal terms the 
R H S  of (9) contains. (This is a well known property of the entropy S( p ) . )  This means 
that the Schmidt canonical form ( 7 a )  has more equally important terms, i.e. a larger 
number of states participates equally in the correlations. 

= (FOX ( p I  and pz are projectors), and only in this case, N(QIZ) = 0. 

(iii) Since 

S(@l2) S( P I )  + S( P ? )  

(and this is true for any quantum state p I . ) ,  one can convert this inequality into an  
equality (8) with the added negentropy term. This expresses the fact that there exists 
a necessary balance between the entropies of the parts (S( p l )  + S( p r ) )  and the negen- 
tropy of the correlations between them resulting in the zero entropy of the whole (if 
p,? is a pure state). 

Now we are prepared to go over to the identical-fermion picture: 

V r 2 = 2 '  2 A 1 2 @ 1 2 = C  r,"'[2 I '(cp,O,y,-x,Ocp,)] (10) , 
where we have used theorem 1 and ( 7 a ) .  

Theorem 3. The form (10)  of U:', has a few important properties. 
( i )  It is a coherent mixture ( a  linear combination with positive coefficients) of 

(normalised) Slater determinants that are strongly orthogonal, i.e. both cp, and x,  are 
orthogonal to (F, and x, respectively when i # j .  

(ii) Expansion (10)  is a Schmidt canonical form of U;?. Hence, { r , / 2 :  i = 1,2, . . .} 
are the positive eigenvalues of the  reduced statistical operator p:' Tr21Ur2)(V ;I. Each 
of these eigenvalues has an even degeneracy. 

( i i i )  The negentropy of U{2 has two terms: 
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The first term is a measure o f the  Pauli correlations inherent in the two-identical-fermion 
state q r2. Namely, it has the same value for every two-identical distant fermion state, 
even when there are no distant correlations, i.e., when = cp Ox in the distinct-particle 
picture. Then (10) has only one Slater determinant term, and the second term in (1 1) 
is zero. The latter term is a measure of the distant correlations in qr2 because it is 
preserved in the transition from one picture to the other (cf theorem 1). 

Pro05 Since (10) is obtained by application of the exchange operator E,? (cf theorem 
l ) ,  it is useful to introduce explicitly the natural isomorphism E mapping H 2  onto HI 
and giving the ‘same’ vector. For instance, in the coordinate-spin representation E 
acts on some second-particle function x ( r 2 ,  U?) giving a first-particle function 
f ( r l ,  nI)  = x ( r z  = r l ,  U? = uI), i.e. the same functional dependence on the new argu- 
ments. The equivalence of E12 and E consists of the following: 

def 

Eldcp, ox, 1 = ( E x ,  10 ( E  - ) V I )  

which was written as x,Ocp, in (10). 
( i )  The expressions in the square brackets in (10) are Slater determinants if and 

only if cp, i x, when both are in the same particle space. Actually, cp, I x, for any i 
and j .  Owing to (3) and the idempotency of PI,  

p1 = T r 2 ~ @ l J ( @ 1 2 ~  = T r 2 ( P 1 0  pS)l@~J(@,?l  

= PI TrJP ,  0 P~)~@12)(@12~ = P,p,  

and symmetrically 

p> = Pipz .  

As a consequence, q, = Pqp, (in any of the particle spaces), and symmetrically x, = P’x,. 
The orthogonality of P and P’ (cf (IC)) then implies that of cp, and x,. Finally, the 
fact that pol 1 cp, and ,y, I x,, i t ’ j ,  was established in ( 7 a - c ) .  

in an orthonormal first-particle basis {cp,: i = 1,2,  . . .} 
is a Schmidt canonical form if and only if this basis is an eigenbasis of pI . Schrodinger’s 
theorem (Schrodinger 1935) claims that this requirement is valid if and only if the set 
{ x , :  i = 1,2 ,  . . .} is orthonormal. We use the latter necessary and sufficient condition 
because it is simpler. The set of second factors in (10) is {x,: i =  1 , 2 , .  . . }U  
{ - c p , :  i = 1 , 2 , .  . .}, and it is orthonormal as proved under (i). Consequently, (10) is a 
Schmidt canonical form, the orthonormal set { c p , :  i = 1,2 ,  . . .}U {x,: i = 1,2,  . . .} is an 
eigenbasis of p f  in R ( p f 1 ,  and each eigenvalue r,/2 of p :  obviously has an even 
degeneracy. 

( i i )  The expansion ( 7 a )  of 

as follows from (9) and ( l o ) ,  and it gives (11). 

As shown in theorem 3(iii), the negentropy of distant correlations (9) is preserved 
in the transition from the distinct-particle to the identical-fermion picture. What is 
more, the coherent mixing { r , :  i = 1 ,2 , .  . .} itself is preserved (cf ( 7 a )  with (10)). To 
prove the dynamical origin of distant correlations, we demonstrate analogous preserva- 
tion in evolution without interaction. 
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Theorem 4.  If a two-identical-fermion system in a state qr2 evolves without interaction, 
i.e. if the evolution operator has the form U,@ U,, then the coherent mixing { r j :  i = 
1 , 2 , .  . .} (and hence the negentropy of q;,) does not change. In other words, the 
distant correlations come about or change only due to interaction, i.e. they have a 
dynamical origin. 

Proof: Applying UI 0 U, to ( lo) ,  one obtains 

Owing to the unitarity of U1 and U*,  (12) is still an expansion in an  orthonormal 
first-particle basis, and also the second-particle states are orthonormal. Hence, accord- 
ing to Schrodinger’s theorem (cf proof of theorem 3(iii)), (12) is a Schmidt canonical 
form in terms of Slater determinants. This implies that the coherent mixing also in 
( U ~ @ U > ) ~ L  is { r i :  i = 1 , 2 ,  . . . I ,  

6. Discussion 

Theorems 1 and 2 can be understood to imply that the preparation condition (2) makes 
it impossible for the Pauli correlations to show up  in the measurements. Thus, they 
are physically irrelevant in this case. This makes the distinct-particle picture the natural 
framework for describing distant correlations of identical fermions. Further, this 
confirms Pauli’s claim (Pauli 1973) that, in case of non-overlapping spatial regions, 
the exclusion principle is irrelevant. 

In a previous article (VujitiC and Herbut 1984) we have shown that a necessary 
and sufficient condition for an Einstein-Podolsky-Rosen state is the degeneracy of at 
least one positive eigenvalue r, of the reduced statistical operators. In this paper it 
was seen that pr=Tr219r2) (qr21  has all its r, with even degeneracy (Kramers 
degeneracy, cf theorem 3(ii)). One wonders if this means that every Vr2 is an EPR state. 

In order to clarify this point, it is important to notice that the standard theory of 
distant correlations (including the previously mentioned article) is not applicable to 
qr2.  Besides the preparation condition (2), YF2 also satisfies condition (4) of being 
antisymmetric. This precludes any physical meaning of the single particles as subsys- 
tems. In particular, for .\U[, the one-particle operators O , O I ,  and 11002 are not 
physical observables at all, whereas the theory of distant correlations is based on them 
(see discussion A in VujitiC and Herbut (1984)). 

The isomorphic transition q rZ + @,, to the distinct-particle picture recovers the 
physical idea of subsystems lost in confining H , O  H 2  to its antisymmetric subspace. 
Since @ , 2  does not always have Kramers degeneracy, i t  is not necessarily an EPR state. 

Evidently, is an EPR state if and only if its p:  has at least one positive eigenvalue 
of multiplicity not less than four. 

It is known (Herbut and VujitiC 1976) that every state vector Q I 2 €  H I @  H Z  has a 
Schmidt canonical form ( 7 a ) .  In this paper it has been established that if qr2  satisfies 
(2) and (4), then it has also a stronger Schmidt canonical form (10). It can be shown 
that this result is more general than the distant-correlation case explored here, i.e. it 
is valid without restriction (2). 

Let us point out that the entire treatment of this paper is based on the use of the 
orthogonality condition ( 1  c). One realisation of this (required by distant correlations) 
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is given by ( l a ,  b) .  There are other possibilities for the choice of P, and P i ,  i = 1 , 2 ,  
in connection with other physical problems. For instance, isospin is a typical and well 
known case of equivalence of the identical-particle picture (isospin formalism) and 
the distinct-particle picture (the proton-neutron description (Messiah 1962)). 
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